RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FOURTH SEMESTER EXAMINATION, MAY 2012

SECOND YEAR

Date : 21/05/2012

Time : 11 am – 3 pm

MATHEMATICS (Honours)

Paper: IV Full Marks: 100

[Use Separate Answer Books for each group]

Group - A

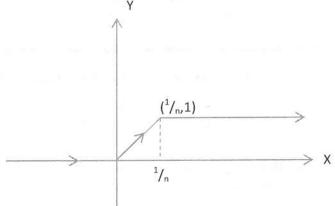
(Answer any five questions from Question No. 1 to 8 and any three from Question No. 9 to 13)

- a) If D is dense in \mathbb{R} , prove that for any $x \in \mathbb{R}$, the set $\{x + y : y \in D\}$ is also dense in \mathbb{R} . Hence [3+2]find two countable, disjoint, dense sets in \mathbb{R} . b) In \mathbb{R}^2 , find d(A, B) where $A = \{(x, y) : x = 0, y \in \mathbb{R}\}$ and $B = \{(x, y) : x \in \{1, \frac{1}{2}, \frac{1}{3}, \dots \}, y \in \{1, \frac{1}{2}, \frac{1}{3}, \dots \}$ \mathbb{R} }, d is the usual metric on \mathbb{R}^2 . [2] Let $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by $d(x, y) = \min\{1, |x - y|\}$. a) Show that d defines a metric on \mathbb{R} . b) What is the diameter of \mathbb{R} under this metric? c) Is d equivalent to the usual metric on \mathbb{R} ? Justify your answer. [3+1+3] 3. Let us consider the Euclidean metric on \mathbb{R}^2 and let A be a non-empty closed subset of \mathbb{R}^2 . a) Prove that $x \in \mathbb{R}^2 \setminus A$ if and only if d(x, A) > 0. b) Let B be another closed subset of \mathbb{R}^2 . Then does $A \cap B = \phi \Rightarrow d(A, B) > 0$? Justify your answer. a) Define a 2nd countable and a separable metric space. Show that every separable metric space is [2+3]2nd countable. b) Let G be a dense open set in \mathbb{R} . Show that for each $x \in \mathbb{R}$, there are $a,b \in G$ such that [2] x = a - b. a) Let $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n \supseteq A_{n+1} \supseteq \cdots$ be a nested family of closed sets in a metric space (X,d)with $d(A_n) < \infty \forall n$. Where $d(A_n)$ denotes the diameter of A_n in (X,d). Then does this imply $\bigcap_{n=1} A_n \neq \emptyset$? Justify.
 - b) Can the set of irrational numbers be written as $\bigcup_{n=1}^{\infty} F_n$ where F_n are closed subsets of \mathbb{R} ? [3+4]
- 6. a) Let $f,g:X\to Y$ be continuous functions where X,Y are metric spaces. Prove that the set $\{x\in X:f(x)=g(x)\}$ is closed in X.

Use above result to show that if $f,g:\mathbb{R}\to\mathbb{R}$ are continuous and if $f|_{\mathbb{Q}}=g|_{\mathbb{Q}}$ then f=g. [3+2]

- b) Let X be a metric space, $A \subseteq X$. Prove that the function $f: X \to \mathbb{R}$ defined by $f(x) = d(x, A) \ \forall \ x \in X$ is uniformly continuous. [2]
- 7. a) Define Lebesgue number of an open cover in a metric space (X, d). Prove that if (X, d) is compact then the Lebesgue number exists for any open cover.
 - b) By the use of the fact in (a) prove that any continuous function $f:(X,d)\to(y,d')$ is uniformly continuous if (X,d) is compact. [4+3]
- 8. a) Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f(\mathbb{Q}) \subseteq \mathbb{R} \mathbb{Q}$ and $f(\mathbb{R} \mathbb{Q}) \subseteq \mathbb{Q}$. Prove that f can't be continuous. [2]
 - b) Show that a connected metric space with at least two points is uncountable. [3]
 - c) Prove that the space \mathbb{Q} is not connected. [2]

9. Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of functions defined on \mathbb{R} . The graph of f_n is shown in the figure. Write the expression for $f_n(x)$. If $\{f_n\}_{n\in\mathbb{N}}$ converges pointwise to f, then compute f. Does $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f? Justify your answer. [1+1+3]



- 10. Let $\{f_n\}_{n\in\mathbb{N}}$, where $f_n:\mathbb{R}\to\mathbb{R}$, be a sequence of differentiable functions and $\sum_{n=1}^{\infty}f_n$ converges uniformly to f. Is $\sum_{n=1}^{\infty}f_n'$ convergent? Justify. If $\sum_{n=1}^{\infty}f_n'$ convergent then does the equality $\sum_{n=1}^{\infty}f_n'=f'$ holds?
- 11. a) Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of functions defined on a set $E \subset \mathbb{R}$ and let $\{M_n\}_{n\in\mathbb{N}}$ be a sequence of positive real numbers. If $\sum_{n=1}^{\infty} M_n$ be convergent and if $|f_n(x)| \leq M_n$ for each $x \in E$ and $n = 1, 2, \cdots$, then show that the series $\sum_{n=1}^{\infty} f_n$ converges uniformly on E. [3]
 - b) Prove or disprove: $\sum_{n=1}^{\infty} \frac{1}{2^n} \cos(3^n x)$ represents an everywhere continuous function. [2]
- 12. Answer either (a) or (b):
 - a) Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series such that $\overline{\lim} |a_n|^{\frac{1}{n}} = R$, $0 < R < \infty$. Prove that the given series is absolutely convergent for $|x| < \frac{1}{R}$ and divergent for $|x| > \frac{1}{R}$.
 - b) If a power series $\sum_{n=0}^{\infty} a_n x^n$ converges at the end point x = R of the interval of convergence (-R, R), prove that the series is uniformly convergent on [0, R]. [5]
- 13. If $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2} = f(x)$, then prove that $\int_0^{\pi} f(x)dx = 2\left(1 + \frac{1}{3^3} + \frac{1}{5^3} + \cdots\right)$. [5]

Group - B

(Attempt any three from Q. No. 14 to 18 and any two from Q. No. 19 to 21)

- 14. a) Solve $x \frac{d^2y}{dx^2} (x+2)\frac{dy}{dx} + 2y = x^3e^x$ after the determination of a solution of its reduced equation. [5]
 - b) Find the eigen values and eigen functions for the differential equation $\frac{d}{dx}(x\frac{dy}{dx}) + \frac{\lambda}{x}y = 0$, $(\lambda > 0)$. Satisfying the boundary conditions y(1) = 0 and $y(e^{\pi}) = 0$.

15. a) Solve
$$\frac{d^2y}{dx^2} - \frac{2}{x}\frac{dy}{dx} + (a^2 + \frac{2}{x^2})y = 0$$
 by reducing to normal form. [5]

b) Solve:
$$\frac{dx}{dt} + 5x + y = e^{t}$$
. [5]
$$\frac{dy}{dt} - x + 3y = e^{2t}$$

16. a) Solve the differential equation:

$$(2xz - yz)dx + (2yz - zx)dy - (x^2 - xy + y^2)dz = 0.$$
 [5]

b) Find the equation of the integral surface of the differential equation 2y(z-3)p+(2x-z)q=y(2x-3) which passes through the circle z=0, $x^2+y^2=2x$, where

$$p = \frac{\partial z}{\partial x}, \ q = \frac{\partial z}{\partial y}.$$
 [5]

- 17. a) Show that the general solution of the linear partial differential equation Pp + Qq = R is F(u,v) = 0 where F is an arbitrary function and $u(x,y,z) = C_1$ and $v(x,y,z) = C_2$ are two independent integrals of $\frac{dx}{P} = \frac{dy}{O} = \frac{dz}{R}$. [5]
- b) Find a complete integral of $xpq + yq^2 = 1$ by Charpit's method where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$. [5]

18. a) Solve the PDE:
$$(y+z+u)\frac{\partial u}{\partial x} + (z+u+x)\frac{\partial u}{\partial y} + (u+x+y)\frac{\partial x}{\partial z} = x+y+z$$
. [4]

b) Solve:
$$4\frac{\partial^2 z}{\partial x^2} - 4\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 16 \log(x + 2y)$$
. [4]

c) Find the general solution of following linear PDE:

$$[D^4 + D'^4]z = 0$$
 where $D = \frac{\partial}{\partial x}$, $D' = \frac{\partial}{\partial y}$. [2]

- 19. a) Find the pedal equation of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with respect to its centre as pole. [3]
 - b) If $x\cos\theta + y\sin\theta = p$ touches the curve $x^m y^n = a^{m+n}$, prove that $p^{m+n} m^m n^n = (m+n)^{m+n} a^{m+n} \sin^n \theta \cos^m \theta$. [4]
 - c) Find the radius of curvature of $y = xe^{-x}$ at its maximum point. [3]
- 2.3. a) Show that the points of intersection of the curve: $2y^3 - 2x^2y - 4xy^2 + 4x^3 - 14xy + 6y^2 + 4x^2 + 6y + 1 = 0$

and its asymptotes lie on the straight line
$$8x + 2y + 1 = 0$$
. [5]

- b) If envelope of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $x^{\frac{2}{3}} + y^{\frac{2}{3}} = c^{\frac{2}{3}}$ then prove that the parameters a, b are connected by a + b = c. [5]
- 21. a) Find the values of x for which the curve $y = x^4 6x^3 + 12x^2 + 5x + 7$ is concave upword or downwords. [3]
 - b) Find the volume of the solid obtained by the revolution of the Cissoid $y^2(2a-x)=x^3$ about its asymptote. [4]
 - c) Show that the area bounded by the circle $x^2 + y^2 = 64a^2$ and the parabola $y^2 = 12ax$ (a > 0) lying in the positive side of x-axis is $\frac{16a^2}{3}(4\pi + \sqrt{3})$. [3]